Bayesian Methods (2 days)
Event box
Please note: a timetable will be sent out to all participants one week before the event.
A 2 day course from 27th - 28th February 2020.
This module introduces students to the use of Bayesian methods for data analysis in the social and empirical sciences. It provides an introduction to conditional probability and Bayes' theorum and its application to the calculation of everyday probabilities. The discussion is then extended to the use od Bayes' theorum to calculate statistics.
Ideas such as the subjective interpretation of probability, types of prior distributions, and the use of Bayes theorem in updating information. Inference procedures such as Bayesian parameter estimates will be introduced. The main focus of the module will be the application of Bayesian models in the social and environmental sciences and related disciplines.
Important please note:
We will make every attempt to accommodate Lancaster University staff and postgraduate research students on our courses. However, if a course becomes fully booked we reserve the right to give priority to students on the MSc in Statistics, MSc in Data Science, and external participants.
Payment: Once you have registered, please pay at the online shop
Accommodation Details: Can be found here.
Cancellation Policy
Registrations are transferable to another course or individual at any time. Full refunds will be given for cancellation 10 or more working days before the course start date. Otherwise the full course fee will be charged.
Non-attendance
Accessibility Statement |
Legal Notice |
Freedom of Information |
Cookies Notice |
Staff & Student Privacy Notice |
External User Privacy Notice |
©
2022 Lancaster University. All rights reserved.
Privacy Statement
To use this platform, the system writes one or more cookies in your browser. These cookies are not shared with any third parties. In addition, your IP address and browser information is stored in server logs and used to generate anonymized usage statistics. Your institution uses these statistics to gauge the use of library content, and the information is not shared with any third parties.